skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Maxwell, Justin T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summer circulation and moisture patterns in the Southeast United States are controlled by the position of the North Atlantic subtropical high. In a warming climate, the subtropical high is projected to strengthen and expand west, but there remains uncertainty regarding its variability and linkages to natural drivers. Here, we use a tree-ring network across the Southeast United States to reconstruct the relative intensity of the pressure gradient across the subtropical high’s western flank over the past 870 years. Variations in the flank’s position and the pressure gradient have been a major driver of the hydroclimate—including creating a Southeast-Caribbean moisture dipole—since 1140 CE. We document a significant increase in flank positional variability since 1900 CE, with westward migrations becoming more extreme. Likewise, major volcanic eruptions cause a multiyear period of westward positioning, leading to distinct regional moisture gradients. Our record highlights important changes in flank behavior, which has important implications for water resource management in a warming world. 
    more » « less
  2. Abstract Over recent decades, the southeastern United States (Southeast) has become increasingly well represented by the terrestrial climate proxy record. However, while the paleo proxy records capture the region's hydroclimatic history over the last several centuries, the understanding of near surface air temperature variability is confined to the comparatively shorter observational period (1895‐present). Here, we detail the application of blue intensity (BI) methods on a network of tree‐ring collections and examine their utility for producing robust paleotemperature estimates. Results indicate that maximum latewood BI (LWBI) chronologies exhibit positive and temporally stable correlations (r = 0.28–0.54,p < 0.01) with summer maximum temperatures. As such, we use a network of LWBI chronologies to reconstruct August‐September average maximum temperatures for the Southeast spanning the period 1760–2010 CE. Our work demonstrates the utility of applying novel dendrochronological techniques to improve the understanding of the multi‐centennial temperature history of the Southeast. 
    more » « less
  3. ABSTRACT Forest composition is changing, yet the consequences for terrestrial carbon cycling are unclear. In the eastern United States, water‐demanding “mesophytic” tree species are replacing “xerophytic” oaks (Quercusspp.) and hickories (Caryaspp.), raising concerns that forest productivity will become increasingly sensitive to more frequent and severe drought conditions predicted for the region. However, we have a limited understanding of the extent to which the mortality risk of xerophytes versus mesophytes is coordinated with their growth sensitivity during drought. Here, we evaluated growth and mortality dynamics for 20 abundant eastern United States tree species following a severe drought in the summer of 2012. We synthesized data from ~4500 forest inventory plots and used an approach that quantified relative drought responses between co‐located trees to minimize impacts from environmental heterogeneity. We found that mesophytes were just as likely to perish as co‐occurring xerophytes but were more sensitive to drought in terms of diminished growth. These findings suggest that xerophytic decline is likely to lead to reduced carbon uptake during drought and that management efforts to conserve oak‐hickory stands will be decisive to sustain the carbon mitigation potential of these forests. However, we also found that growth‐mortality relationships differed between functional groups. Among xerophytes, growth and survival during drought were decoupled. Among mesophytes, there was a high degree of coordination, where species that experienced greater mortality also experienced greater growth reductions. Therefore, mesophytes with high growth sensitivity to water deficits are likely to be the most vulnerable to drought‐driven die‐off events moving forward. 
    more » « less
  4. Abstract Contextualizing current increases in Northern Hemisphere temperatures is precluded by the short instrumental record of the pastca.120 years and the dearth of temperature-sensitive proxy records, particularly at lower latitudes south of <50 °N. We develop a network of 29 blue intensity chronologies derived from tree rings ofTsuga canadensis(L.) Carrière andPicea rubensSarg. trees distributed across the Mid-Atlantic and Northeast USA (MANE)—a region underrepresented by multi-centennial temperature records. We use this network to reconstruct mean March-September air temperatures back to 1461 CE based on a model that explains 62% of the instrumental temperature variance from 1901−1976 CE. Since 1998 CE, MANE summer temperatures are consistently the warmest within the context of the past 561 years exceeding the 1951−1980 mean of +1.3 °C. Cool summers across MANE were frequently volcanically forced, with significant (p<0.05) temperature departures associated with 80% of the largest tropical (n=13) and extratropical (n=15) eruptions since 1461 CE. Yet, we find that more of the identified cool events in the record were likely unforced by volcanism and either related to stochastic variability or atmospheric circulation via significant associations (p<0.05) to regional, coastal sea-surface temperatures, 500-hpa geopotential height, and 300-hpa meridional and zonal wind vectors. Expanding the MANE network to the west and south and combining it with existing temperature-sensitive proxies across North America is an important next step toward producing a gridded temperature reconstruction field for North America. 
    more » « less
  5. Forests around the world are experiencing changes due to climate variability and human land use. How these changes interact and influence the vulnerability of forests are not well understood. In the eastern United States, well‐documented anthropogenic disturbances and land‐use decisions, such as logging and fire suppression, have influenced forest species assemblages, leading to a demographic shift from forests dominated by xeric species to those dominated by mesic species. Contemporarily, the climate has changed and is expected to continue to warm and produce higher evaporative demand, imposing stronger drought stress on forest communities. Here, we use an extensive network of tree‐ring records from common hardwood species across ~100 sites and ~1300 trees in the eastern United States to examine the magnitude of growth response to both wet and dry climate extremes. We find that growth reductions during drought exceed the positive growth response to pluvials. Mesic species such asLiriodendron tulipiferaandAcer saccharum, which are becoming more dominant, are more sensitive to drought than more xeric species, such as oaks (Quercus) and hickory (Carya), especially at moderate and extreme drought intensities. Although more extreme droughts produce a larger annual growth reduction, mild droughts resulted in the largest cumulative growth decreases due to their higher frequency. When using global climate model projections, all scenarios show drought frequency increasing substantially (3–9 times more likely) by 2100. Thus, the ongoing demographic shift toward more mesic species in the eastern United States combined with drier conditions results in larger drought‐induced growth declines, suggesting that drought will have an even larger impact on aboveground carbon uptake in the future in the eastern United States. 
    more » « less
  6. Increasing tropical cyclone (TC) pressure on temperate forests is inevitable under the recent global increase of the in- tensity and poleward migration of TCs. However, the long-term effects of TCs on large-scale structure and diversity of temperate forests remain unclear. Here, we aim to ascertain the legacy of TCs on forest structure and tree species rich- ness by using structural equation models that consider several environmental gradients and use an extensive dataset containing >140,000 plots with >3 million trees from natural temperate forests across eastern United States impacted by TCs. We found that high TC activity (a combination of TC frequency and intensity) leads to a decrease in maximum tree sizes (height and diameter), an increase in tree density and basal area, and a decline in the number of tree species and recruits. We identified TC activity as the strongest predictor of forest structure and species richness in xeric (dry) forests, while it had a weaker impact on hydric (wet) forests. We highlight the sensitivity of forest structure and tree species richness to impacts of likely further increase of TC activity in interaction with climate extremes, especially drought. Our results show that increased TC activity leads to the homogenization of forest structure and reduced tree species richness in U.S. temperate forests. These findings suggest that further declines in tree species richness may be expected because of the projected increase of future levels of TC activity. 
    more » « less
  7. Abstract Understanding the response of tropical cyclone precipitation to ongoing climate change is essential to determine associated flood risk. However, instrumental records are short-term and fail to capture the full range of variability in seasonal totals of precipitation from tropical cyclones. Here we present a 473-year-long tree-ring proxy record comprised of longleaf pine from excavated coffins, a historical house, remnant stumps, and living trees in southern Mississippi, USA. We use cross-dating dendrochronological analyses calibrated with instrumental records to reconstruct tropical cyclone precipitation stretching back to 1540 CE. We compare this record to potential climatic controls of interannual and multidecadal tropical cyclone precipitation variability along the Gulf Coast. We find that tropical cyclone precipitation declined significantly in the two years following large Northern Hemisphere volcanic eruptions and is influenced by the behavior of the North Atlantic subtropical high-pressure system. Additionally, we suggest that tropical cyclone precipitation variability is significantly, albeit weakly, related to Atlantic multidecadal variability. Finally, we suggest that we need to establish a network for reconstructing precipitation from tropical cyclones in the Southeast USA if we want to capture regional tropical cyclone behavior and associated flood risks. 
    more » « less
  8. The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes—the proximate cause of such inland flooding—have been more difficult to detect. Here, we present a latewood tree-ring–based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed. 
    more » « less